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In this essay, we will describe and discuss various aspects of the expo-
nential function. Euler’s number will be shown through the convergence of
the sequence (1 + 1

n
)n. The exponential function will be constructed follow-

ing this, using both the characterization of the function through the limit
limn→∞(1 + x

n
)n as well as the sum of the infinite series

∑∞
n=0

xn

n!
. The con-

tinuity of the real-valued function will be discussed as well, along with the
fact that the exponential function is a homomorphism. Following this, the
derivative of the exponential will be explored, along with the proof that its
derivative exists and is equal to itself.

To start, we prove that Euler’s number – the real number e = 1+ 1
1!

+ 2
2!

+...
exists.

Consider a sequence of real numbers where:
x0 = 1, xn = (1 + 1

n
)n and xn+1 = xn + 1

(n+1)!

Using the binomial theorem (for a, b ∈ Q and n ∈ N):

(a + b)n =
∑n

k=0

(
n
k

)
an−kbk

Here: a = 1 and b = 1
n
, yielding: (1 + 1

n
)n =

∑n
k=0

(
n
k

)
1n−k( 1

n
)k

=
∑n

k=0
n!

k!(n−k)!
1n−k

nk

=
∑n

k=0
n!

k!(n−k)!
1
nk

= n!
1(n−0)!

1
1

+ n!
1!(n−1)!

1
n

+ n!
2!(n−2)!

1
n2 + n!

3!(n−3)!
1
n3 + ... + n!

n!(n−n)!
1
nn

= 1 + 1 + 1
2!

(n−1)
n

+ 1
3!

(n−1)(n−2)
n2 + ... + ( 1

n
)n

= 1 + 1 + 1
2!

(1− 1
n
) + 1

3!
(1− 1

n
)(1− 2

n
) + ...+ ((1− 1

n
)(1− 2

n
)...(1− n−1

n
) 1
n!

)

≤ 1 + 1 + 1
2!

+ 1
3!

+ ... + 1
n!
≤
∑n

k=0
1

2k−1 = 2 + 1 + 1
2

+ 1
4

+ ... + 1
2n−1

Thus xn = (1 + 1
n
)n < 3.
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Furthermore, we can show that the sequence xn is strictly increasing for
all n by replacing n with n + 1 and comparing the two sequences:

•(1 + 1
n
)n =

∑n
k=0

(
n
k

)
1n−k( 1

n
)k

= 1 + 1 + 1
2!

(1− 1
n
) + 1

3!
(1− 1

n
)(1− 2

n
) + ...+ ((1− 1

n
)(1− 2

n
)...(1− n−1

n
) 1
n!

)

Whereas:

•(1 + 1
n+1

)n+1 =
∑n+1

k=0

(
n+1
k

)
1n+1−k( 1

n+1
)k

= 1 + 1 + 1
2!

(1− 1
n+1

) + 1
3!

(1− 1
n+1

)(1− 2
n+1

)+

... + ((1− 1
n+1

)(1− 2
n+1

)...(1− n
n+1

) 1
(n+1)!

)

The first sequence has one fewer term than the second sequence, with
each of the corresponding terms for the first sequence taking values which
are less than or equal to those of the n + 1 sequence. Because

(1 + 1
n+1

)n+1 − (1 + 1
n
)n ≥ 0

it can be said the sequence (1 + 1
n
)n is monotonically increasing.

From this, we can further conclude that 2 < xn < 3 because x1 =
(1 + 1

1
)1 = 2.

We say that the sequence (1 + 1
n
)n is convergent, Cauchy (elements get

closer to each other as sequence length increases), and that its limit is denoted
e, the supremum (least upper bound) of the set xn ⊂ [2, 3). Thus, we have
proved that there exists a real number:

e = 1 + 1
1!

+ 1
2!

+ ... = limn→∞(1 + 1
n
)n.

Moving onto the exponential function, we aim to prove that the function
exp exists from R→ R. Consider the sequence of rational numbers:

ex0 = 1 and exn+1 = exn + xn+1

(n+1)!

It follows:
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ex1 = ex0 + x1

1!
= 1 + x1

1!
and that ex2 = ex1 + x2

2!
= 1 + x1

1!
+ x2

2!

Then exn+1 = 1 + x1

1!
+ x2

2!
+ ... + xn+1

(n+1)!
=
∑n+1

k=0
xk

k!
, and thus:

exn = exn+1 − xn+1

(n+1)!
=
∑n+1

k=0
xk

k!
− xn+1

(n+1)!
=
∑n

k=0
xk

k!

We see that exn takes the form: 1 + x1

1!
+ x2

2!
+ ...+ xn

n!
, which is can be said

to be
∑n

k=0
xk

k!
.

We next show that {exn}
∞
n=0 is a Cauchy sequence as well. It is understood

that a sequence f is Cauchy if:
(∀ε ∈ R)((ε > 0)→ (∃N ∈ N)(∀m,n > N)(|f(n)− f(m)| < ε))

Applying this definition to exn gives:

|exn+p − exn| = |
∑n+p

k=0
xk

k!
−
∑n

k=0
xk

k!
|

= |
∑n+p

k=n+1
xk

k!
| ≤

∑n+p
k=n+1

xk

k!
≤
∑∞

k=n+1
xk

k!
< ε∑∞

k=n+1
xk

k!
is known to be a convergent series, as its sequence of partial

sums tends to a limit (here it is zero). Thus {exn}
∞
n=0 is a Cauchy sequence.

Furthermore, it is known that for all k > N – for any chosen y, it is
true that k! > yk. Therefore, for some |x

y
| < 1, it holds that |

∑n+p
k=n+1

xk

k!
| ≤∑n+p

k=n+1
xk

yk
. This cements the fact that {exn}

∞
n=0 converges. It is then under-

stood that limn→∞
∑n

k=0
xk

k!
=
∑∞

k=0
xk

k!
. Thus, the function

exp : R→ R, x 7→ exp(x) :=
∑∞

k=0
xk

k!

is well defined because the series above is absolutely convergent for all
x ∈ R.

Assuming 0 < x < n and that x = p
q
∈ Q, we will now prove that:

limn→∞(1 + x
n
)n =

∑∞
k=0

xk

k!

We have already established that (1 + 1
n
)n is a Cauchy sequence. Here,

we extend this to (1 + x
n
)n, employing the binomial theorem again:

Here: a = 1 and b = x
n
, yielding: (1 + x

n
)n =

∑n
k=0

(
n
k

)
1n−k(x

n
)k

=
∑n

k=0
n!

k!(n−k)!
xk

nk

= n!
n!

x0

n0 + n!
(n−1)!

x
n

+ n!
2!(n−2)!

x2

n2
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= 1 + x + n(n−1)
2!

(x
n
)2 + n(n−1)(n−2)

3!
(x
n
)3 + ... + n!

n!(n−n)!(
x
n
)k

We compare this to the sequence exn = 1 + x1

1!
+ x2

2!
+ ... + xn

n!
=
∑n

k=0
xk

k!

as defined earlier, proving that exn =
∑n

k=0
xk

k!
> (1 + x

n
)n.

It should also be noted that use of the binomial theorem will also yield
the result: (1 + 1

n
)n ≤

∑n
k=0

1
k!
≤ exp(1) = limn→∞

∑n
k=0

1
k!

Next, assuming 0 < x < n and that x = p
q
∈ Q, (1 − x

n
)−n is examined.

Employing the negative binomial theorem:
1

(1+x)n
=
∑∞

k=0

(
n+k−1

k

)
(−1)kxk

yields: (1− x
n
)−n = 1 + x + n(n+1)

2!
(x
n
)2 + ...

Comparing to the above sequences, it is plain to see that
(1 + x

n
)n <

∑n
k=0

xk

k!
≤ (1− x

n
)−n

We next consider the limit of (1 + x
n
)n − (1− x

n
)−n:

limn→∞(1 + x
n
)n − (1− x

n
)−n = 0

This allows for use of the squeeze theorem/sandwich theorem:

Because (1 + x
n
)n <

∑n
k=0

xk

k!
≤ (1− x

n
)−n,

and limn→∞(1 + x
n
)n = limn→∞(1− x

n
)−n,

then limn→∞(1 + x
n
)n = limn→∞

∑n
k=0

xk

k!
= limn→∞(1− x

n
)−n,∀x > 0

In the case where x = 0, we see that the relation still holds, with the
trivial result of e0 = 1. When x < 0, we look to the properties of the series
1 + x + x2

2!
+ .... It is true that (1 + x+y

n
)n = (1 + x

n
)n · (1 + y

n
)n. In other

words, ex is a homomorphism as well:

exey =
∑∞

n=0
xn

n!
·
∑∞

n=0
yn

n!
=
∑∞

n=0

∑n
k=0

xkyn

k!n!
=
∑∞

n=0
(x+y)n

n!
= ex+y

Then it follows that (1 + −x
n

)n is equal to (1 + x
n
)−n, with similar results

for the other portions of the relation.
With this, we have proven limn→∞(1 + 1

n
)n = exp(x) = ex, x ∈ R and

showed an equivalence between two relations of the exponential function –
as both the limit stated above and the infinite series sum

∑∞
n=0

xn

n!
.

We next show the continuity of the exponential function. It has already
been shown that exp(x + y) = exp(x) · exp(y), along with the fact that
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exp(x) =
∑∞

n=0
xn

n!
converges over the whole of R, meaning the exponential

function is continuous.

Thus, we have proved that there exists a continuous function
exp : R→ R.

We will next show that the exponential function is differentiable, and
that its derivative is itself. From the earlier proofs, we have already shown
that interval of convergence for the exponential function is over all of the real
numbers.

First the function’s differentiability will be proven. Recall that a function
f is differentiable at x if limh→0

f(x+h)−f(x)
h

exists.

Dx(exp(x)) = limh→0
exp(x+h)−exp(x)

h

Because we have shown exp(x + y) = exp(x) · exp(y):

= limh→0
exp(x)·exp(h)−exp(x)

h

= limh→0
exp(x)(exp(h)−1)

h

Because exp(x) is constant here:

limh→0
exp(x)(exp(h)−1)

h
= exp(x)

Thus, we have proved that the exponential function’s derivative exists
and is itself.

This follows from the fact that the exponential function is strictly convex –
a property stemming from its absolute convergence in its series representation
as well as its continuity.

Furthermore, because the function is differentiable and well defined, its
continuity is implied, strengthening our previous conclusion.

In conclusion, we have proved that there exists a real number e, which
takes the form 1 + 1

1!
+ 2

2!
+ ... = limn→∞(1 + 1

n
)n, during the process which

we showed that this sequence is Cauchy. Next, we showed the existence of
the continuous exponential function exp : R→ R, using the form limn→∞

xn

n!
.

First, it was proved that the power series representation of the exponential
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function is a convergent series. The equivalence between the sum of the
infinite power series and the limit as n → ∞ for (1 + x

n
)n is established as

well. The continuity of the exponential function was explored next, finalizing
the proof for exp : R→ R and during which, we showed that the function is a
homomorphism as well. Furthermore, we have also shown that the derivative
for this function exists and is equal to itself.
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